

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Conjur SSE-C S3 Demo

[image: GitHub (pre-)release]
[image: GitHub issues] [https://github.com/infamousjoeg/conjur-sse-c-s3-demo/issues]
[image: GitHub license] [https://github.com/infamousjoeg/conjur-sse-c-s3-demo/blob/master/LICENSE]

Demonstrating upload and download of an object to an AWS S3 [https://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html] bucket that is encrypted/decrypted utilizing a customer-provided AES256 key [https://docs.aws.amazon.com/AmazonS3/latest/dev/ServerSideEncryptionCustomerKeys.html] that is securely stored and retrieved from CyberArk Conjur [https://conjur.org].

	Conjur SSE-C S3 Demo

	Pre-Requisites

	Docker Quick Start

	Video Demonstration

	Detailed Demo Walkthrough

	./0-start.sh

	./1-upload.sh

	Ansible Playbook - s3-sse-c-upload.yml

	AWS S3 Objects Uploaded

	./2-download.sh

	Ansible Playbook - s3-sse-c-download.yml

	AWS S3 Objects Downloaded

	./3-clean.sh

	Policy Walkthrough - aws-sse-c-policy.yml

Pre-Requisites

	Docker CE

	To easily install Docker CE on Linux:

$ curl -fsSL http://get.docker.com -o get-docker.sh && ./get-docker.sh

	You will have to add yourself to the Docker group & refresh:

$ sudo usermod -aG docker $USERNAME
$ newgrp docker

	Docker Compose

	To easily install Docker Compose on Linux:

$ sudo curl -L https://github.com/docker/compose/releases/download/1.18.0/docker-compose-`uname -s`-`uname -m` -o /usr/local/bin/docker-compose
$ sudo chmod +x /usr/local/bin/docker-compose

	CyberArk Conjur v4 Enterprise Edition Docker Image

	If you have ConjurOps v2 credentials:

$ docker login -u $CONJUROPS_USERNAME https://registry2.itci.conjur.net
$ docker pull registry2.itci.conjur.net/conjur-appliance:4.9-stable

Docker Quick Start

To super duper easily install both Docker Community Edition (CE) and Docker Compose on Ubuntu all at once, you can run this script:

$ sudo ./_deps.sh

Video Demonstration

[image: asciicast] [https://asciinema.org/a/171634]

Detailed Demo Walkthrough

$ git clone https://github.com/infamousjoeg/conjur-sse-c-s3-demo.git
$ cd conjur-sse-c-s3-demo

./0-start.sh

This script brings up and configures a Conjur Master in the local Docker host.

$ docker-compose up -d conjur
$ docker exec conjur-master \
 evoke configure master -h conjur-master -p Cyberark1 demo

The configured Conjur Master’s public key certificate is copied to a freshly created ./certs directory.

$ mkdir certs
$ docker cp conjur-master:/opt/conjur/etc/ssl/ca.pem ./certs/ca.crt
$ openssl x509 -in ./certs/ca.pem -inform PEM -out ./certs/ca.crt

After a healthy Conjur Master is detected, Conjur is logged into via CLI and the Policy plugin is installed.

In a real world scenario, the following steps would be done manually by a Security Admin – Conjur’s equivalent to a CyberArk Vault Admin.

These steps have been automated for the sake of this demonstration.

After logging in as admin, we need to install the policy plugin

$ docker exec conjur-master /bin/bash -c "
 conjur authn login -u admin -p Cyberark1
 conjur plugin install policy
 conjur policy load --as-group security_admin /src/policies/aws-sse-c-policy.yml
 conjur variable values add aws-sse-c/aws-s3/aes256_key $(openssl rand -hex 16)
 conjur variable values add aws-sse-c/aws-iam/access_key_id $AWS_ACCESS_KEY_ID
 conjur variable values add aws-sse-c/aws-iam/secret_access_key $AWS_SECRET_ACCESS_KEY
"

Finally, we pre-build the Docker image our S3-Workers will use to upload and download our HIPAA Authorization PDF to AWS S3 both encrypted and unencrypted.

The S3-Worker Docker image is an Ubuntu based container with Ansible installed during build. It is built to run Ansible Playbooks ephemerally, whether remote or local.

$ docker-compose build s3-worker

./1-upload.sh

This script first generates a Host Factory token within Conjur to allow our S3-Uploader container to receive a trusted machine identity.

Using the Conjur CLI available on the Conjur Master, we create a Host Factory token from our s3-workers_factory that is associated with the s3-workers layer that is established in our previously loaded Conjur Policy.

$ output=$(docker exec conjur-master conjur hostfactory tokens create --duration-minutes 1 aws-sse-c/s3-workers_factory | jq -r '.[0].token')

$ hf_token=$(echo "$output" | tail -1 | tr -d '\r')

Now that the Host Factory token has been generated with a one (1) minute time-to-live (TTL), the S3-Uploader container can be run. But first, we need to get the AWS Access Key ID and AWS Secret Access Key from within Conjur.

AWS_ACCESS_KEY_ID=$(docker exec conjur-master conjur variable value aws-sse-c/aws-iam/access_key_id)
AWS_SECRET_ACCESS_KEY=$(docker exec conjur-master conjur variable value aws-sse-c/aws-iam/secret_access_key)

Finally, we can start up the S3-Uploader container as ephemeral --rm and provide it the relevant variables for the CyberArk.Conjur-Host-Identity Ansible Role [https://galaxy.ansible.com/cyberark/conjur-host-identity/] and the SSILab.AWS-CLI Ansible Role [https://galaxy.ansible.com/ssilab/aws-cli/] to work properly.

Within the container, we are going to set the Conjur Master’s hostname into /etc/hosts, install the two (2) aforementioned Ansible Roles from Ansible Galaxy [https://galaxy.ansible.com], and then start up our s3-sse-c-upload.yml Ansible Playbook.

docker-compose run --rm --name s3-uploader \
 -e AWS_ACCESS_KEY_ID=$AWS_ACCESS_KEY_ID \
 -e AWS_SECRET_ACCESS_KEY=$AWS_SECRET_ACCESS_KEY \
 -e AWS_DEFAULT_REGION=$AWS_DEFAULT_REGION \
 -e CONJUR_MAJOR_VERSION=4 \
 s3-worker bash -c "
 echo '192.168.3.10 conjur-master' >> /etc/hosts
 ansible-galaxy install cyberark.conjur-host-identity
 ansible-galaxy install ssilab.aws-cli
 HFTOKEN=$hf_token ansible-playbook -i \"localhost,\" -c local /src/playbooks/s3-sse-c-upload.yml
 "

After the Ansible Playbook completes running, the S3-Uploader Docker container disappears.

Ansible Playbook - s3-sse-c-upload.yml

In this Playbook, we start off by installing two (2) Roles. The first is CyberArk’s very own Conjur-Host-Identity role. It is very straight-forward in it’s configuration requirements.

The $HFTOKEN variable that is looked up using the Environment Variable lookup module is giving during the run of the Playbook. You’ll also notice the use of the File lookup module to get the Conjur Master’s public key certificate that was created during 0-start.sh for proper validation.

- role: cyberark.conjur-host-identity
 conjur_appliance_url: 'https://conjur-master/api'
 conjur_account: 'demo'
 conjur_host_factory_token: '{{ lookup("env", "HFTOKEN") }}'
 conjur_host_name: 's3-uploader'
 conjur_ssl_certificate: '{{ lookup("file", "/src/certs/ca.crt") }}'
 conjur_validate_certs: true

The second Role that is installed via this Playbook is SSILab’s AWS-CLI. It simply needs to know a default region for AWS to target, an AWS Access Key ID, and an AWS Secret Access Key with proper permissions to do it’s job.

I setup an AWS Access Key that only has permission to the specific AWS S3 bucket that is used in this demonstration and I rotate frequently as a best practice.

- role: ssilab.aws-cli
 aws_output_format: 'json'
 aws_region: '{{ lookup("env", "AWS_DEFAULT_REGION") }}'
 aws_access_key_id: '{{ lookup("env", "AWS_ACCESS_KEY_ID") }}'
 aws_secret_access_key: '{{ lookup("env", "AWS_SECRET_ACCESS_KEY") }}'

Finally, we have our tasks. I’ll break them down one-by-one:

The first task is just to upload the HIPAA Authorization Form unencrypted to prove that we can at least do that.

- name: Upload HIPAA Authorization Form to AWS S3 unencrypted
 shell: "aws s3 cp /src/assets/hipaa-authorization.pdf s3://conjur-sse-c-s3-demo/hipaa-authorization-unencrypted.pdf"

Second and third go hand-in-hand, a quick Summon test is run to pull the AES256 Key and print the debug JSON response returned to prove out the methods.

In a real world scenario, this would never be done except in DEV while troubleshooting/testing.

- name: Run Summon Test - Pull AES256 Key from Conjur
 shell: "summon --yaml 'AES_KEY: !var aws-sse-c/aws-s3/aes256_key' printenv AES_KEY"
 register: aes256_key
- name: Show AES256 Key Returned Value from Conjur
 debug:
 var: aes256_key

Finally, the star of the show! Uploading the HIPAA Authorization Form using an AES256 Key that is fetched on-demand from Conjur and injected into the bash process as an Environment Variable by Summon [https://cyberark.github.io/summon].

- name: Upload HIPAA Authorization Form to AWS S3 encrypted w/ AES256 Key (SSE-C)
 shell: "summon --yaml 'AES_KEY: !var aws-sse-c/aws-s3/aes256_key' bash -c 'aws s3 cp /src/assets/hipaa-authorization.pdf s3://conjur-sse-c-s3-demo/hipaa-authorization-AES256.pdf --sse-c AES256 --sse-c-key $AES_KEY'"

AWS S3 Objects Uploaded

At this point, the hipaa-authorization.pdf has been uploaded twice to the s3://conjur-sse-c-s3-demo S3 bucket. Once unencrypted and a second time encrypted using the Conjur-provided AES256 key.

Use this time to show how one is accessible and readable while the encrypted one is not without the proper AES256 key to decrypt.

./2-download.sh

This script is a spitting mirror image of 1-upload.sh in the sense that it grabs a Host Factory token in the same manner and also the AWS Access Key ID and Secret Access Key from Conjur via CLI.

The difference comes in the Ansible Playbook that is run in this script as detailed in the below Docker run command:

docker-compose run --rm --name s3-downloader \
 -e AWS_ACCESS_KEY_ID=$AWS_ACCESS_KEY_ID \
 -e AWS_SECRET_ACCESS_KEY=$AWS_SECRET_ACCESS_KEY \
 -e AWS_DEFAULT_REGION=$AWS_DEFAULT_REGION \
 -e CONJUR_MAJOR_VERSION=4 \
 s3-worker bash -c "
 echo '192.168.3.10 conjur-master' >> /etc/hosts
 ansible-galaxy install cyberark.conjur-host-identity
 ansible-galaxy install ssilab.aws-cli
 HFTOKEN=$hf_token ansible-playbook -i \"localhost,\" -c local /src/playbooks/s3-sse-c-download.yml
 "

Ansible Playbook - s3-sse-c-download.yml

As with the previous section, this also doesn’t undergo any changes with the exception of the order in which we provide input and output paths to the aws s3 cp command:

tasks:
 - name: Download HIPAA Authorization Form from AWS S3 unencrypted
 shell: "aws s3 cp s3://conjur-sse-c-s3-demo/hipaa-authorization-unencrypted.pdf /src/assets/downloads/"
 - name: Run Summon Test - Pull AES256 Key from Conjur
 shell: "summon --yaml 'AES_KEY: !var aws-sse-c/aws-s3/aes256_key' printenv AES_KEY"
 register: aes256_key
 - name: Show AES256 Key Returned Value from Conjur
 debug:
 var: aes256_key
 - name: Download HIPAA Authorization Form from AWS S3 decrypted w/ AES256 Key (SSE-C)
 shell: "summon --yaml 'AES_KEY: !var aws-sse-c/aws-s3/aes256_key' bash -c 'aws s3 cp s3://conjur-sse-c-s3-demo/hipaa-authorization-AES256.pdf /src/assets/downloads/ --sse-c AES256 --sse-c-key $AES_KEY'"

AWS S3 Objects Downloaded

Finally, we taken what was uploaded previously, both unencrypted and encrypted versions of our HIPAA Authorization PDF, and downloaded it locally to ./assets/downloads/.

Both files should be readable as the one labeled AES256 was encrypted in AWS S3, but has since been decrypted using the same AES256 key from Conjur to be readable now.

./3-clean.sh

This script will not prompt for permission!

This will bring down the entire orchestrated demonstration!

$ docker-compose down --remove-orphans
$ rm -rf ./certs
$ rm -f ./playbooks/*.retry
$ rm -f ./assets/downloads/*.pdf

Policy Walkthrough - aws-sse-c-policy.yml

The policy file that was created for this demonstration is a very straight-forward and simple one.

A policy with the id aws-sse-c is created along with the namespace for three (3) secrets:

	aws-s3/aes256_key

	aws-iam/access_key_id

	aws-iam/secret_access_key

- !policy
 id: aws-sse-c
 body:
 - &keys
 - !variable aws-s3/aes256_key
 - !variable aws-iam/access_key_id
 - !variable aws-iam/secret_access_key

No secret values are stored or pushed as part of a policy file. I do that as part of 0-start.sh. Therefore, it’s safe for me to commit it to Source Control Management without worry as I did here: policies/aws-sse-c-policy.yml.

A Layer is created and named s3-workers. This allows me to apply this policy there and dynamically enroll Hosts to be a member of that Layer (like nesting groups in Active Directory) and inherit the policy. This allows us to scale out or in as needed without having to create and manage additional policies.

 - !layer s3-workers

Since dynamic enrollment will be utilized, a Host Factory is established to generate nonforgeable tokens to allow entrance into the Layer by a Host when it is given back to our Conjur Master along with the public key certificate of our Master.

In this particular instance, a Host Factory named s3-workers_factory is created and associated with the s3-workers layer. Any Host turning in a token generated from this Host Factory will allow entrance into the s3-workers layer only.

 - !host-factory
 id: s3-workers_factory
 layers: [!layer s3-workers]

Finally, we can set our AuthZ (authorization). We use the keywords !permit or !deny based on whether or not to permit a role privileges to a resource.

In this instance, the permitted role is our s3-workers Layer and the resource it is gaining privileges on is our *keys anchor that includes our three (3) previously defined secret namespaces.

 - !permit
 role: !layer s3-workers
 privileges: [read, execute]
 resource: *keys

The policy as a whole isn’t much and won’t require any further modification unless additional Layers or Groups need access to the secrets established within this policy.

- !policy
 id: aws-sse-c
 body:
 - &keys
 - !variable aws-s3/aes256_key
 - !variable aws-iam/access_key_id
 - !variable aws-iam/secret_access_key

 - !layer s3-workers

 - !host-factory
 id: s3-workers_factory
 layers: [!layer s3-workers]

 - !permit
 role: !layer s3-workers
 privileges: [read, execute]
 resource: *keys

Conjur SSE-C S3 Demo

Downloaded assets from AWS S3 will appear in this directory.

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_images/171634.png
"stdout": "5306b2eb285b0b22dfb18c3bc3ed35cd",
"stdout lines": [
"5306b2eb285b0b22dfh18c3bc3ed35cd”

1
}

TASK [Upload HIPAA Authorization Form to AWS S3 encrypted w/ AES256 Key (SSE-C)]
%%k %k

changed: [localhost]

PLAY RECAP 3k >k 5k >k 5k >k 5k %k 5k 3k 5k 3K 5k %k >k %k >k 3k k k Xk k X >k 5k 3k >k 3k 5k 3k 5k 5k >k 3K >k >k >k 5k 3k 5k 3k 5k 5k >k 3k >k 3k %k 3k %k 5k %k 5k Kk Kk k k.
localhost : ok=23 =15 unreachable=0 failed=0

Uploaded all assets to s3://conjur-sse-c-s3-demo/

1d 5h 31m jgarcia ubuntuclient .. » conjur-sse-c-s3-demo
$ aws s3 ls s3://conjur-sse-c-s3-demo

2018-03-21 17:45:18 45533 hipaa-authorization-AES256.pdf
2018-03-21 17:45:16 45533 hipaa-authorization-unencrypted.pdf
2018-03-21 17:13:48 45533 hipaa-authorization.pdf

1d 5h 32m jgarcia ubuntuclient .. » conjur-sse-c-s3-demo

s 1

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

